Visualisierung von Stochastik

Räumliche Stochastische Strukturen

Harald G. Grohganz

Diplomandenseminar bei Prof. Dr. Andreas Eberle,

Freitag, 28. November 2008

Teil I Simulation natürlicher Gleichgewichte

Simulation natürlicher Gleichgewichte

Inhaltsverzeichnis

I	Sin	nulation natürlicher Gleichgewichte	1
1	Mod	dellierung - stochastisch vs. deterministisch	2
	1.1	Das Lotka-Volterra-Modell	2
	1.2	Das stochastische Modell	3
	1.3	Weitere Ergebnisse	5
2	Wator - Simulation mittels eines Zellularautomaten		
	2.1	Modellierungsidee und Algorithmus	5
	2.2	Simulation Vorführung	6
II	G	außsche Felder	6
3	Kon	struktion	7

	3.1	Erinnerung: Wiener-Levy-Konstruktion der BB	/	
	3.2	Mehrdimensionale Verallgemeinerung	8	
	3.3	Konstruktion über abstrakten Wienerraum	9	
	3.4	Definition über Gaußschen Hilbertraum	10	
4	Eigenschaften			
	4.1	Mittelwert und Markoveigenschaft	11	
	4.2	Brownsche Bewegung auf raumfüllender Kurve	11	
5	Beis	piele und Simulation	12	
	5.1	Beispiel: GFF auf dem Einheitstorus	12	
	5.2	Diskretierung - »harmonic crystal«	12	
	5.3	Simulation	13	
	5.4	Ausblick	13	
III Literatur 14				
6	5 Schlußwort			
7	7 Literatur			

1 Modellierung - stochastisch vs. deterministisch

1.1 Das Lotka-Volterra-Modell

Lotka-Volterra-Modell: Einführung

Für die grundsätzliche Modellierung von Populationsdynamiken existiert seit 1932 das Lotka-Volterra-Modell. Dieses beschreibt in seiner klassischen Form das Vorliegen zweier Populationen, die sich gegenseitig beeinflussen.

Hier betrachten wir die Anzahl N_1 , N_2 zweier Pflanzenarten mit Wachstumsraten r_1 , r_2 . Eine natürliche Obergrenze der Arten wird durch K_1 , K_2 angegeben - in Abwesenheit der zweiten Pflanzenart gilt also $N_1 = K_1$.

Somit lassen sich K_1 , K_2 auch als **innerspezifischer** Konkurrenzdruck verstehen. Die **zwischenspezifische Konkurrenz** wird durch a_{12} und a_{21} beschrieben, wobei a_{ij} den Effekt der Spezies j auf die Spezies i bezeichnet. Wir nehmen $a_{ij} \ge 0$ an.

Lotka-Volterra-Modell: Differentialgleichungen

Dann können wir für die Populationsgrößen folgendes System von Differentialgleichungen aufstellen:

$$\begin{array}{lcl} \frac{dN_1}{dt} & = & r_1N_1\left(1-\frac{N_1}{K_1}-a_{12}\frac{N_2}{K_1}\right) \\ \frac{dN_2}{dt} & = & r_2N_2\left(1-\frac{N_2}{K_2}-a_{21}\frac{N_1}{K_2}\right) \end{array}$$

Berechnet man die (nichttrivialen) Gleichgewichtspunkte des obigen Systems, so erhält man:

$$N_1 = \frac{K_1 - a_{12}K_2}{1 - a_{12}a_{21}}$$

$$N_2 = \frac{K_2 - a_{21}K_1}{1 - a_{12}a_{21}}$$

$$K_1 > a_{12}K_2$$
 und $K_2 > a_{21}K_1$,

so existiert ein nichttriviales stabiles Gleichgewicht, in dem beide Spezies überleben.

2. **Konkurrenzausschluss**: Eine »starke« Spezies verdrängt eine »schwache«. Dieser Fall tritt ein, falls

$$K_1 < a_{12}K_2$$
 und $K_2 > a_{21}K_1$,

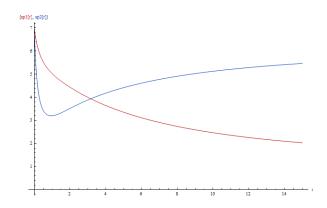
d.h. in diesem Fall setzt sich Spezies 2 durch und Spezies 1 stirbt aus.

3. **Startdominanz**: Falls die zwischenspezifische Konkurrenz stärker ist als die innerspezifische Konkurrenz, d.h. es gilt

$$K_1 < a_{12}K_2$$
 und $K_2 < a_{21}K_1$,

dann können beide Spezies nicht koexistieren. Welche Spezies ausstirbt, hängt von den Startbedingungen ab.

Lotka-Volterra-Modell: Illustration



$$K_1 = 7$$
, $K_2 = 7$, $r_1 = 1$, $r_2 = 5$ $a_{12} = 0.95$, $a_{21} = 0.75$

1.2 Das stochastische Modell

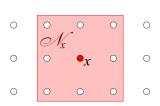
Erweiterung zu räuml. stoch. Modell

Wir modellieren das räumliche System als **zeitstetigen Markovprozess** auf \mathbb{Z}^d mit Zuständen $\eta_t \in \{1,2\}^{\mathbb{Z}^d}$, d.h. $\eta_t(x) = i$ für eine Pflanze vom Typ i auf dem Feld x zum Zeitpunkt t. Leere Felder gibt es in diesem Modell nicht.

Zur Beschreibung der ortsabhängigen Dynamik setzen wir

$$f_i(x) = \frac{|\{y \mid \eta_t(y) = i, y \in \mathcal{N}_x\}|}{|\mathcal{N}_x|},$$

wobei $\mathcal{N}_x := x + \{y \mid 0 < ||y||_{\infty} \le R\}$ die Nachbarschaft von x beschreibt.



Das stochastische Modell: Übergangsregeln

Der Fortgang des Prozesses $(\eta_t)_{t>0}$ wird durch folgende Regeln beschrieben:

• Falls $\eta_t(x) = 1$, so wird es im nächsten Schritt eine 2 mit Rate

$$\frac{\lambda f_2}{\lambda f_2 + f_1} (f_1 + \alpha_{12} f_2).$$

• Falls $\eta_t(x) = 2$, so wird es im nächsten Schritt eine 1 mit Rate

$$\frac{f_1}{\lambda f_2 + f_1} (f_2 + \alpha_{21} f_1).$$

Interpretation:

Partikel *i* stirbt mit Rate $f_i + \alpha_{ij} f_j$. f_i beschreibt den innerspezifischen Konkurrenzdruck; $\alpha_{ij} f_j$ den zwischenspezifischen. Nach dem Tod des Partikels wird es sofort ersetzt, proportional zu λ (die gewichtete Dichte der beiden Spezies).

Erste Analyse: Das Erwartungswertmodell

Als ersten Schritt untersuchen wir das Verhalten des Systems in der Erwartung, d.h. wir nehmen alle Raumpunkte als unabhängig an und untersuchen die Entwicklung der Dichten. Sei u_i der räumliche Anteil im Zustand i.

Da $u_1 + u_2 = 1$, genügt eine gewöhnliche Differentialgleichung:

$$\frac{du_1}{dt} = -u_1 \frac{\lambda u_2}{\lambda u_2 + u_1} (u_1 + \alpha_{12} u_2) + u_2 \frac{u_1}{\lambda u_2 + u_1} (u_2 + \alpha_{21} u_1) .$$

Neben den trivialen Gleichgewichtspunkten 0 und 1 existiert ein weiteres Gleichgewicht bei

$$u_1^* = \frac{1}{1 + \frac{\lambda - \alpha_{21}}{1 - \lambda \alpha_{12}}}.$$

Ergebnisse im Erwartungswertmodell

Aus diesem Gleichgewichtspunkt lässt sich folgendes Verhalten des Prozesses ablesen:

- 1. **Koexistenz**: Falls $0 \le \alpha_{21} < \lambda$ und $0 \le \alpha_{12} < 1/\lambda$ gilt, so ist das nichttriviale Gleichgewicht stabil.
- 2. **Konkurrenzausschluss**: Wenn gilt: $\alpha_{21} > \lambda$ und $0 \le \alpha_{12} < 1/\lambda$, so wird Spezies 2 von Spezies 1 verdrängt. Analog für die umgekehrte Richtung.
- 3. **Startdominanz**: Im Fall $\alpha_{21} > \lambda$ und $\alpha_{12} > 1/\lambda$ ist der nichttriviale Gleichgewichtspunkt unstabil. Welche Spezies sich durchsetzen wird, hängt von der Startverteilung ab.

Das räumliche Modell

Wird nun R endlich gesetzt (d.h. nur die Nachbarschaft \mathcal{N}_x hat Einfluss auf $\eta_t(x)$), so ergeben sich im Wesentlichen drei große Abweichungen zum Erwartungswert- und damit auch zum Lotka-Volterra-Modell:

- 1. Nachbarschafts-Interaktion sorgt für eine räumliche Trennung der Spezies.
- 2. Nachbarschafts-Interaktion reduziert die Größe des Parameterbereiches, in dem Koexistenz möglich ist.
- Nachbarschafts-Interaktion reduziert die Größe des Parameterbereiches, bei dem der Ausgang von der Startverteilung abhängt.

Bemerkung. Für $\alpha_{12} = \alpha_{21} = 1$, $\lambda = 1$ und $\mathcal{N} = \{-1, 1\}$ stimmt dieses Modell mit dem »voter model« überein.

1.3 Weitere Ergebnisse

Vergleich: Gemeinsamkeiten...

Für den Fall α < 1 verhält sich das räumliche Modell wie im Erwartungswertmodell. Allgemeiner gilt:

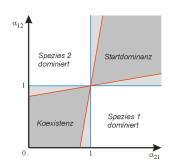
Theorem 1. Falls $\lambda \geq 1$ und R groß genug, so konvergiert die Verteilung der Spezies im räumlichen Modell gegen ein Produktmaß mit Dichte

$$u_1^* = \frac{1}{1 + \frac{\lambda - \alpha_{21}}{1 - \lambda \alpha_{12}}}.$$

Solche Langzeit-Limites implizieren, dass auf lange Sicht gesehen die räumlichen Gegebenheiten keinen Unterschied mehr ausmachen und die rein erwartungsmäßige Modellierung sich als adäquat erweist, falls sie genau ein stabiles Gleichgewicht aufweist.

...und Unterschiede

Es gibt aber auch Fälle, bei denen das räumliche Modell vom Erwartungswertmodell abweicht: Für jedes N > 2 existiert ein $\lambda \in (1, \infty)$, sodass α_{12}, α_{21} so gewählt werden können, dass vom Erwartungswertmodell Koexistenz (oder Startdominanz) vorausgesagt wird, wohingegen im räumlichen Modell die 2-Spezies von der 1-Spezies verdrängt wird.



Legende:

Erwartungswertmodell räumliches Modell

Offene Fragen und Vermutungen

Vermutung 1

Gilt $\lambda = 1$ und $\alpha \equiv \alpha_{12} = \alpha_{21}$, so ist im Falle $d \ge 2$ für jedes $\alpha < 1$ Koexistenz möglich, unabhängig von der räumlichen Dimension.

Durch die Unterschiede bei Koexistenz und Startdominanz im Falle $\lambda > 1$ wird folgende Vermutung motiviert:

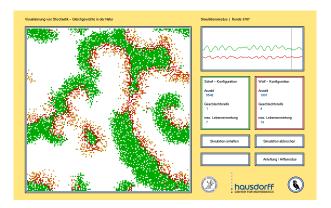
Vermutung 2

Gilt $\lambda = 1$, so gibt es keine Startdominanz im räumlichen Modell. Falls $\alpha_{21} > \alpha_{12} > 1$ und anfangs unendlich viele 1-Spezies vorhanden sind, so setzen sich diese mit W'keit 1 durch; und umgekehrt.

2 Wator - Simulation mittels eines Zellularautomaten

2.1 Modellierungsidee und Algorithmus

Simulation | Das Modell



Die Wölfe-Schafe-Simulation beruht zu großen Teilen auf dem Modell »Wator«, das 1984 erstmals publiziert wurde. Das Feld ist torisch verknüpft, es werden zwei Spezies (Raub- und Beutetier) betrachtet, Parameter sind wählbar. Leere Felder sind möglich.

Simulation | Algorithmus

Der Simulation liegen folgende Regeln zugrunde:

- »Objektidentität«: Jedes Tier ist eindeutig bestimmt, es weist die Eigenschaften Alter, Sättigungsgrad und Position auf.
- »Aktionen«: Im Laufe eines Spielzugs führt jedes Tier (abhängig vom Alter) die Aktion »Nachwuchs« oder »Bewegung« aus.
- »zufälliger Tod«: Jedes Tier stirbt in dem Spielzug mit der W'keit $\frac{1}{\text{max. Alter}}$.
- »Schlagen«: Ein Wolf frisst immer ein benachbartes Schaf. Bei mehreren benachbarten Schafen geschieht die Auswahl zufällig.
- »Hunger«: Wölfe können nur max. 4 Runden ohne Nahrung überleben.
- »Pflanzen«: Für Schafe steht unbegrenzt viel Nahrung zur Verfügung.

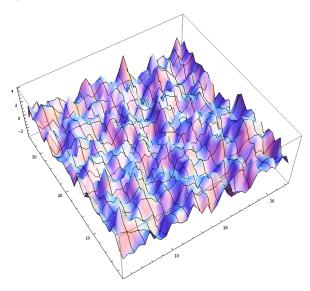
2.2 Simulation | Vorführung

Simulation | Vorführung

Teil II

Gaußsche Felder

Gaußsche Felder | Gaussian free fields



Inhaltsverzeichnis

3 Konstruktion

3.1 Erinnerung: Wiener-Levy-Konstruktion der BB

Erinnerung: Wiener-Levy-Konstruktion I

Idee

Brownsche Bewegung als zufällige Überlagerung deterministischer Pfade.

Sei $(B_t)_{t\geq 0}$ auf (Ω, \mathcal{A}, P) eine Brownsche Bewegung mit $B_0 = 0$. Betrachte nun B als Zufallsvariable $(B_t)_{0\leq t\leq 1}: \Omega \to C([0,1])$.

Dann ist $B(\omega)$ ein zufälliger Pfad und $P_0 = P \circ B^{-1}$ ist Wienermaß auf C([0,1]). Definiere

$$||x||_H^2 = \int_0^1 |x'(t)|^2 dt$$
, d.h. P_0 ist »Standardnormalverteilung«

auf dem Hilbertraum

$$H = \{ f \in C([0,1]) \mid f(0) = 0, f \text{ ist absolutstetig mit } f' \in L^2([0,1]) \}$$

mit Skalarprodukt $(f,g)_H = \int_0^1 f'(t)g'(t)dt$.

Nun konstruieren wir die Zufallsvariable $B: \Omega \to C([0,1])$ mit Verteilung P_0 :

$$B_t(\boldsymbol{\omega}) = \sum_{n=1}^{\infty} Y_n(\boldsymbol{\omega}) e_n(t)$$

mit $\{e_n\}$ ONB von $H, Y_n : \Omega \to \mathbb{R}, Y_n \sim \mathcal{N}(0,1)$ i.i.d. ZV, $\omega \in \Omega$ und $t \in [0,1]$.

Da dim $H=\infty$, konvergiert obige Reihe P-f.s. nicht (GdgZ). Daher betrachte Banachraum $C[(0,1)] \supset H$ mit sup-Norm, in dem die Reihe konvergiert (Satz von WIENER, LÉVY, ITÔ etc.).

$$e_0(t) = t$$
, $e_n(t) = \frac{\sqrt{2}}{\pi n} \cdot \sin(\pi nt)$.

3.2 Mehrdimensionale Verallgemeinerung

Bezeichnungen

Sei $D \subseteq \mathbb{R}^d$. Bezeichne mit

$$H_s(D) := \{ f \in C_0^{\infty}(D) \mid \nabla f \in L^2, f \text{ hat kompakten Träger in } D \}$$

den Raum aller glatten Funktionen mit kompaktem Träger, deren erste Ableitung in L^2 liegt. $H(D) = \overline{H_s(D)}$ sei die Vervollständigung unter der durch das **Dirichlet-Skalarprodukt** (oder **Energiefunktional**)

$$(f,g)_{\nabla} := \int_{D} \nabla f \cdot \nabla g \, dx$$

induzierten Norm. Diese bezeichnen wir mit $||f||_{\nabla} = \sqrt{(f, f)_{\nabla}}$.

 $H(D) = W_0^{1,2}$ ist ein Sobolev-Raum.

Für eine bijektive Abbildung h von D nach D' gilt, falls h eine Translation oder orthogonale Rotation ist,

$$\int_{D'} \nabla (f \circ h^{-1}) \cdot \nabla (g \circ h^{-1}) dx = \int_{D} (\nabla f \cdot \nabla g) dx$$

sowie, falls h = cx für ein $c \in \mathbb{R}$,

$$\int_{D'} \nabla (f \circ h^{-1}) \cdot \nabla (g \circ h^{-1}) dx = c^{d-2} \int_{D} (\nabla f \cdot \nabla g) dx.$$

Insbesondere folgt daraus, dass das Dirichlet-Skalarprodukt invariant unter konformen Abbildungen für d=2 ist – auch daher ist das Gaußfeld ein interessantes Objekt.

Sei $(f,g) = \int fg \, dx$ das Standardskalarprodukt für Funktionen auf D, $||f|| = \sqrt{(f,f)}$ die dazugehörige Norm. Durch partielle Integration erhält man $(f,g)_{\nabla}=(f,-\Delta g)$.

Theorem 2. Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum und μ_V das W'ma β $\frac{1}{Z} \cdot \exp\left(\frac{\|\nu\|_V^2}{2}\right)$, $Z \in \mathbb{R}$. Dann sind äquivalent:

- 1. v hat Verteilung μ_V .
- 2. v hat dieselbe Verteilung wie $\sum_{i=1}^{d} \alpha_i v_i$, wobei $\{v_i\}$ eine ONB für V ist und $a_i \sim \mathcal{N}(0,1)$.
- 3. Die charakteristische Funktion von v ist für alle $t \in \mathbb{R}^d$ gegeben durch

$$\phi_{\nu}(t) = \mathbb{E}\left[e^{i\cdot(\nu,t)}\right] = e^{-\frac{1}{2}\|t\|^2}.$$

4. Für jedes feste $w \in V$ ist (v, w) eine normalverteilte Zufallsvariable mit Mittelwert 0und Varianz $||w||^2$.

Eine Zufallsvariable, die diese Bedingungen erfüllt, heißt standard-normalverteilt (standard Gaussian random variable) auf V.

Konstruktion des Gaußfeldes

Das Gaußfeld ist also eine standard-normalverteilte ZV auf H(D). Wegen dim $H(D) = \infty$ ist dies nicht so einfach möglich.

Warnung: So gehts nicht

 $h \in H(D)$ ZV, deren Projektionen auf endlichdim. Teilräume von H(D) standard-normalverteilt

Bezüglich einer ONB wären aber dann die einzelnen Komponenten von h i.i.d. Gaußsche ZVn, somit wäre f.s. die Summe ihrer Quadrate unendlich, was $h \notin H(D)$ bedeuten würde!

Eine Definition ist über zwei Zugänge möglich:

28

29

30

3.3 Konstruktion über abstrakten Wienerraum

Abstrakter Wienerraum

Sei *H* ein Hilbertraum mit dim $H = \infty$.

Gesucht: Definition für $h \in H$ standard-normalverteilt.

Idee: h als zufälliges Element eines Banachraums $B \supset H(D)$.

Eine Norm $|\bullet|$ auf H heißt **messbar**, wenn für jedes $\varepsilon > 0$ ein endlichdim. Teilraum $E_{\varepsilon} \subset H$ existiert, für den gilt:

$$E \perp E_{\varepsilon} \Rightarrow \mu_{E}(\{x \in E \mid |x| > \varepsilon\}) < \varepsilon,$$

wobei μ_E das Gaußmaß auf E beschreibt.

Theorem 3. Wenn T ein Hilbert-Schmidt-Operator auf H ist, d.h. $\sum ||Tf_j||^2 < \infty$ für eine ONB $\{f_i\}$ von H gilt, dann ist die Norm $||T \bullet||$ messbar.

Nun setze $B = \overline{H}$ unter der Norm $| \bullet |$, B^* sei der topologische Dualraum und \mathcal{B} die kleinste σ -Algebra, in der die Funktionale aus B^* messbar sind.

Dann liegt H dicht in B. Für $f \in B^*$ gilt: $f|_H$ ist stetig auf H, da messbare Normen auf H immer schwacher sind als die H-Norm.

Wegen f = 0 in $H \Rightarrow f = 0$ in B ist die Restriktion injektiv.

Somit ergibt sich $B^* \subset H \subset B$.

Im Falle $f \in B^*, b \in B$ schreiben wir auch (f,b) := f(b) (»Dualitätsprodukt«).

Für ein $E \subset B^*$, dim $E < \infty$ mit H-ONB $\{v_i\}$ ist

$$\phi_E: B \to E, \quad \phi_E(b) = \sum_i (v_i, b) v_i$$

die auf B erweiterte Orthogonalprojektion von H nach E. Dann gilt mit dem Gaußmaße-Theorem:

Theorem 4 (Gross). Wenn $| \bullet |$ messbar ist, dann existiert ein eindeutiges W'maß P, sodass für eine ZV h mit Maß P und jedes $f \in B^*$ die Zufallsvariable $(h, f) \mathcal{N}(0, |f|^2)$ -verteilt ist.

Das Tripel (H, B, P) heißt **abstrakter Wienerraum**.

Beispiel

Im Falle des »klassischen« Wienerraums gilt: H = H((0,1)) mit Dirichlet-Skalarprodukt, $|\bullet| = \|\bullet\|_{\infty}$ und $B = C_0^{\infty}([0,1])$. (s.o.)

Nun können wir das Gaußfeld definieren:

Definition 5. Gegeben eine messbare Norm $| \bullet |$ auf H(D) und B, B^*, \mathcal{B} wie oben. Dann ist das **durch die Norm** $| \bullet |$ **definierte Gaußfeld** die eindeutige B-wertige, \mathcal{B} -meßbare ZV h mit der Eigenschaft, dass für jedes feste $f \in B^*$ die Zufallsvariable $(h, f)_{\nabla}$ eine Gaußsche ZV mit Varianz $|| f ||_{\nabla}^2$ ist.

Äquivalent ist die Formulierung $h = \sum \alpha_i f_i$ mit $\alpha_i \sim \mathcal{N}(0,1)$ und $f_i \in B$, wenn die f_i eine H(D)-ONB bilden – diese Summe ist im Raum B definiert.

Wahl einer messbaren Norm

Eine natürliche Familie messbarer Normen auf H(D) können durch die Eigenwerte des Laplace-Operators erzeugt werden.

31

Standardskalarprodukt) bilden und negative Eigenwerte $\{\lambda_i\}$ haben. Dann ist eine ONB von H(D) gegeben durch $f_i = (-\lambda_i)^{-1/2} e_i$, da mit partieller Integration gilt:

$$(e_i, e_j)_{\nabla} = (e_i, -\Delta e_j) = 0 \quad \text{für } i \neq j,$$

$$(f_i, f_i)_{\nabla} = \left((-\lambda_i)^{-1/2} e_i , \ (-\lambda_i)^{1/2} e_i \right) = 1.$$

Seien $\{e_i\}$ die Eigenvektoren des Laplace-Operators auf D, die eine ONB des $L^2(D)$ (mit

Über $(-\Delta)^a \sum \beta_i e_i := \sum (-\lambda)^a \beta_i e_i$ und $\mathcal{L}_a(D) := (-\Delta)^a L^2(D)$ ist die Schreibweise $H(D) = \mathcal{L}_{-1/2}(D)$ möglich. Damit erhalten wir (h, \bullet) als zufälliges stetiges lineares Funktional auf $\mathcal{L}_{-b}(D)$, falls $b > \frac{d-2}{4}$.

3.4 Definition über Gaußschen Hilbertraum

Alternative Definition

Die Definition über die Begriffe des abstrakten Wienerraums hat zwei Nachteile:

- Die Wahl der Norm ist in gewissem Sinne beliebig, und
- Die ZV $(h, f)_{\nabla}$ ist nicht für alle $f \in H(D)$ definiert.

Über den folgenden Ansatz wird $(h, \bullet)_{\nabla}$ wohldefiniert als ZV für jedes $f \in H(D)$ – allerdings ist damit die Definition eines stetigen Funktionals $f \to (h, f)_{\nabla}$ nicht mehr möglich.

Wir fassen kurz zusammen:

Betrachte den W'raum $(\Omega, \mathscr{F}, \mu)$ mit $\Omega = \{\alpha \mid \alpha = (\alpha_i)_{i \geq 1} \in \mathbb{R}\}$, \mathscr{F} die kleinste σ -Algebra, in der die Koordinatenprojektionen $\alpha \to \alpha_i$ messbar sind und μ das W'maß, in dem $\alpha_i \sim \mathscr{N}(0,1)$ gilt.

Bislang haben wir das Gaußfeld als formelle Summe $h = \sum_{i=1}^{\infty} \alpha_i f_i$ (konvergiert erst in *B*) definiert, wobei die f_i eine geordnete ONB für H(D) sind und $\alpha_i \sim \mathcal{N}(0,1)$ i.i.d.

Nun kann für jedes feste $f \in H(D)$, $f = \sum \beta_i f_i$ die ZV $(h, f)_{\nabla}$ f.s. als Grenzwert der Partialsummen $\sum_{i=1}^k \beta_i \alpha_i$ wohldefiniert werden. Achtung: Die Folge $\beta_i \alpha_i$ muss nicht f.s. absolutsummierbar sein!

Dann erhalten wir:

Definition 6. Das von der geordneten ONB $\{f_i\}$ abgeleitete Gaußfeld ist die indizierte Kollektion $\mathcal{G}(D)$ von ZVn $(h, f)_{\nabla}$ nach obenstehender Konstruktion.

Gaußscher Hilbertraum

Eine abstraktere Definition, die keine spezielle Basis oder Ordnung benötigt, ist wie folgt:

Definition 7. Ein **linearer Gaußraum** (Gaussian linear space) ist ein reeller linearer Raum von ZVn auf einem beliebigen W'raum $(\Omega, \mathscr{F}, \mu)$, sodass jede Variable in diesem Raum eine zentrierte Gaußvariable ist.

Ein Gaußscher Hilbertraum ist ein vollständiger linearer Gaußraum, d.h. ein abgeschlossener Teilraum von $L^2_{\mathbb{R}}(\Omega, \mathscr{F}, \mu)$ bestehend aus Gaußvariablen, die das Standard-Skalarprodukt $(X,Y) = \int XY d\mu$ erben.

Falls $X_1,...X_n$ reellwertige ZVn sind mit der Eigenschaft, dass alle Linearkombinationen zentrierte Gaußvariablen sind, dann ist die gemeinsame Verteilung der X_i durch die Covarianzen $\text{Cov}[X_i,X_j]) = \mathbb{E}[X_i \cdot X_j]$ vorgegeben und dies ist eine lineare Transformation der Standard-Normalverteilung.

Dies gilt auch hier:

Definition 8. Ein **Gaußfeld** (Gaussian free field) ist ein Gaußscher Hilbertraum $\mathscr{G}(D)$ von ZV notiert als » $(h, f)_{\nabla}$ « – eine ZV für jedes $f \in H(D)$ – der das Dirichlet-Skalarprodukt auf H(D) erbt, d.h.

$$\mathbb{E}[(h,a)_{\nabla}(h,b)_{\nabla}] = (a,b)_{\nabla}$$

36

Mit anderen Worten:

Die Abbildung $f \to (h, f)_{\nabla}$ ist eine skalarprodukt-erhaltende Abb. von H(D) nach $\mathscr{G}(D)$.

Wegen $(a,b) = \frac{1}{2}[(a+b,a+b)-(a,a)-(b,b)]$ ist die Abbildung genau dann skalarprodukterhaltend, wenn sie linear und normerhaltend ist, d.h. die Varianz von $(h,f)_{\nabla}$ ist $(f,f)_{\nabla}$ für alle $f \in H(D)$. Damit erhalten wir

Bemerkung

Ein H(D)-indizierter linearer Raum von ZVn $(h, f)_{\nabla}$ ist genau dann ein Gaußfeld, wenn die Abbildung von $f \in H(D)$ nach $(h, f)_{\nabla}$ linear ist und jedes $(h, f)_{\nabla} \sim \mathcal{N}(0, \|f\|_{\nabla}^2)$

4 Eigenschaften

4.1 Mittelwert und Markoveigenschaft

Mittelwert auf h

Wenn $-\Delta a = \rho$ konstant auf einer offenen Menge $D' \subset D$ und = 0 außerhalb D' (d.h. a ist dort harmonisch), dann ist $(h, a)_{\nabla} = (h, \rho)$ anschaulich als Mittelwert auf D' interpretierbar.

Idee für Gaußfeld h

Auch wenn h so stark schwankend ist, dass es nicht als Funktion wohldefiniert ist, so ist dennoch eine Definition von »Mittelwert von h auf D' « möglich.

Da Hilberträume selbstdual sind, gilt: Ist ρ ein W'maß auf D, für das $f \to \rho f := \int f d\rho$ ein stetiges lineares Funktional auf H(D) ist (d.h. $\sum [\rho f_j]^2 < \infty$), so existiert ein $f \in H(D)$, für das $\rho g = (f,g)_{\nabla}$ für alle $g \in H(D)$ gilt.

Somit erhalten wir: $\rho = -\Delta f \in \Delta H(D)$.

Analogon zur Markoveigenschaft

Wenn H_1 und H_2 zwei abgeschlossene orthogonale Teilmengen von H(D), dann ist $(h, \bullet)_{\nabla}$ eingeschränkt auf die beiden Teilmengen unabhängig.

Präziser bezeichne \mathscr{F}_{H_i} die kleinste σ -Algebra in der $h \to (h, f)_{\nabla}$ eine messbare Funktion für jedes $f \in H_i$ ist. Dann erzeugen \mathscr{F}_{H_1} und \mathscr{F}_{H_2} zusammen \mathscr{F} , und μ ist auf den Teilräumen unabhängig.

Zum Beispiel betrachte $H_U(D)$ und $H_U^{\perp}(D)$ mit $U \subseteq D$, $a \in H_U(D) \Leftrightarrow supp\ a = U$, $b \in H_U^{\perp}(D) \Leftrightarrow b$ ist harmonisch auf U. $(H_U(D) \text{ und } H_U^{\perp}(D) \text{ sind orthogonal wegen } (a,b)_{\nabla} = (a,-\Delta b) = 0.)$

Interpretation der Unabhängigkeit des Gaußfelds auf \mathscr{F}_U und \mathscr{F}_U^{\perp}

Gegeben die Werte von h außerhalb von U, dann ist die Verteilung der Werte von h in U eine harmonische Erweiterung auf ∂U plus einem unabhängigen Gaußfeld auf U. Dies wird auch als **Markoveigenschaft** bezeichnet.

4.2 Brownsche Bewegung auf raumfüllender Kurve

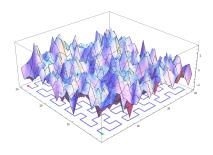
Zusammenhang zwischen BM und GFF

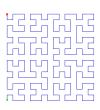
Idee

»Erkunde« das Gaußfeld h entlang einer raumfüllenden Kurve γ .

Der Verlauf der Brownschen Bewegung wird dadurch bestimmt, ob der nächste »ausgelesene« Wert größer oder kleiner ist als erwartet.

Dann kann jede ZV $(h, f)_{\nabla}$ als stochastisches Integral dieser Brownschen Bewegung gesehen werden.





Rigorose Konstruktion

Wähle f_0 mit $\Delta f_0 = c < 0$ auf D. Sei $\gamma \colon [0,1] \to D$ eine stetige raumfüllende Kurve, und $\gamma \colon = \gamma([0,t])$. Sei P_t die Projektion auf den Teilraum $H_{D\setminus \gamma_t}^{\perp}$ der auf $D\setminus \gamma_t$ harmonischen Funktionen.

Durch Zerlegung von f_0 in die Projektionen auf die komplementären Teilräume $\mathscr{F}_{D\setminus \gamma_t}^{\perp}$ und $\mathscr{F}_{D\setminus \gamma_t}$ erhalten wir

$$W(t) := \mathbb{E}\left[(h,f_0)_{
abla} \mid \mathscr{F}_{D\setminus y_t}^{\perp}\right] = (h,P_t(f_0))_{
abla}.$$

W(t) ist ein Martingal, W(t) - W(s) ist normalverteilt mit Varianz |t - s|, hat also dieselbe Verteilung wie eine Brownsche Bewegung.

Da die lineare Hülle der Funktionen $P_t(f_0)$ dicht in H(D) liegt, kann man f.s. (h, f_j) für alle j definieren. Damit folgt die Verallgemeinerung

$$W_f(t) = \mathbb{E}\left[(h,f)_{\nabla} \mid \mathscr{F}_{D\setminus \gamma_t}^{\perp}\right] = (h,P_t(f))_{\nabla}.$$

5 Beispiele und Simulation

5.1 Beispiel: GFF auf dem Einheitstorus

Gaußfeld auf dem Einheitstorus

Sei D der Einheitstorus $\mathbb{R}^d/\mathbb{Z}^d$. Sei $H_s(D)$ die Menge der glatten Funktionen auf D mit Mittelwert 0 und sei H(D) der Hilbertraum-Abschluss.

Eine ONB für die komplexe Version von H(D) ist durch die Eigenwerte des Laplace-Operators Δ gegeben, welche die Form

$$f_k(x) = \frac{1}{2\pi|k|} e^{2\pi i x \cdot k}$$

für $k \in \mathbb{Z}^d \setminus \{0\}$ haben.

Somit ist das komplexe Gaußfeld h auf D eine zufällige Verteilung, deren Fourier-Transformation aus i.i.d. komplexen normalverteilten ZVn multipliziert mit $\frac{1}{2\pi|k|}$ besteht.

Für d = 1 ist der Grenzwert h f.s. definiert und hat dieselbe Verteilung wie ein Vielfaches einer Brownschen Brücke. Wir können also die Brownsche Brücke als eindimensionales Gaußfeld ansehen.

5.2 Diskretierung - »harmonic crystal«

Diskretisierung

Sei Λ ein endlicher Graph mit positiver Gewichtsfunktion w auf den Kanten. Definiere:

$$(f,g)_\nabla = \sum_{e=(x,y)} w(e) \cdot [f(y) - f(x)] \cdot [g(y) - g(x)]$$

Nun »fixiere« einen Rand $\partial \Lambda$, dann ist die Menge $H(\Lambda)$ der reellwertigen Funktionen, die auf $\partial \Lambda$ verschwindet (bzw. feste Werte annimmt), ein $(|\Lambda| - |\partial \Lambda|)$ -dimensionaler Hilbertraum unter dem Dirichlet-Skalarprodukt.

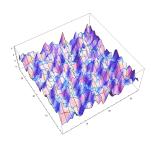
5.3 Simulation

Simulation: Algorithmus

Wir erinnern uns an das Beispiel auf dem Einheitstorus:

Das komplexe Gaußfeld h auf D ist eine zufällige Verteilung, deren Fourier-Transformation aus i.i.d. komplexen normalverteilten ZVn multipliziert mit $\frac{1}{2\pi|k|}$ besteht.

Genauso wird das Gaußfeld auch simuliert – wir simulieren komplexe i.i.d. normalverteilte Zufallsvariablen, normieren diese mit den Eigenwerten des (diskreten) Laplace-Operators und wenden darauf die Fourier-Transformation an.



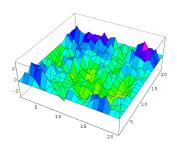
Verfeinerungen

Wir möchten nun für das Gaußfeld h noch Randbedingungen festlegen. Das dadurch entstandene Feld heiße \tilde{h} mit $\tilde{h}=0$ auf ∂D .

Wir suchen also eine harmonische Interpolation für \tilde{h} . Betrachte dazu $h_0 := \tilde{h} + h$, dann müssen wir folgendes Dirichlet-Problem lösen:

$$\Delta h_0 = 0 \quad \text{auf } D$$

$$h_0 = h \quad \text{auf } \partial D$$



5.4 Ausblick

Ausblick: Bildverarbeitung

Wir betrachten ein zweidimensionales Gitter S von »Pixeln« s,t,... Eine Kollektion $y=(y_s)_{s\in S}$ von Belegungen y_s heißt »Konfiguration«, »Signal« oder auch »Bild«.

Vereinfachend sei $y_s \in \{1, -1\}$ mit 1 für schwarz und -1 für weiß.

Beispiel:

 g^0 :

wobei y die »Beobachtung«, g^0 das »Original« und \hat{g}_i »Rekonstruktionen« sind.

Erster Ansatz: Abweichung von der Beobachtung (»Hamming-Distanz«):

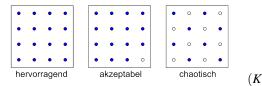
$$d(g,y) = |\{s \in S \mid g_s \neq y_s\}|$$

Für stärkere Gewichtung setze $D(g,y) = 2 \cdot d(g,y) - |S|$.

Weiteres Kriterium:

Verhältnis ungleichfarbiger zu gleichfarbigen Nachbarn:

$$K(g) = -\sum_{s \sim t} g_s g_t$$



Betrachte dann

$$H(g,y) = K(g) + D(g,y) = -\beta \sum_{s \sim t} g_s g_t - \sum_s g_s y_s$$

Ein Bild g mit niedrigem Wert H(g,y) entspricht (hoffentlich) dem Original hinreichend gut. Wir suchen also einen guten Minimierer für $H(\bullet,y)$.

Durch Einbeziehung weiterer Parameter und Terme können wir das Modell erweitern:

$$H(g,y) = -\beta \sum_{s \sim t} g_s g_t + h \sum_s g_s + c \sum_s g_s y_s$$

Hier gibt der mittlere Term einen Drift zur Einfarbigkeit (abhängig vom Vorzeichen von h) und c steuert den Einfluss der Beobachtung.

Dies ist eine Instanz des **Ising-Modells**, welches (nicht nur) in der Bildanalyse eine zentrale Rolle spielt...

Teil III

Literatur

6 Schlußwort

Schlußwort

Die Folien dieses Vortrags sowie eine Aufbereitung der Inhalte in einem druckerfreundlichen Format sind auch im Internet abrufbar unter:

www.grohganz.de/stochastic.html

Vielen Dank für Eure Aufmerksamkeit.

7 Literatur

Literaturverzeichnis

NEUHAUSER, CLAUDIA und PACALA, STEPHEN W.:
 An explicitly spatial version of the Lotka-Volterra model with interspecific competition.

Ann. Appl. Prob., Vol 9., No. 4, 1226-1259,

Online unter: projecteuclid.org/euclid.aoap/1029962871

46

47

- Gaussian free fields for mathematicians
- arXiv: math/0312099v3, arxiv.org/abs/math/0312099v3
- EBERLE, ANDREAS Sommersemester 2007:

Vorlesung »Stochastische Prozesse«

Universität Bonn, Institut für angewandte Mathematik.

Weiterführende Literatur

• GROSS, LEONARD:

Abstract Wiener Spaces.

• Sheffield, Scott (2006):

Proc. 5th Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, p. 31-42. Univ. California Press, Berkeley, Calif., 1967.

Online unter: projecteuclid.org/euclid.bsmsp/1200513262

• JANSEN, SVANTE:

Gaussian Hilbert Spaces.

Cambridge University Press, Cambridge, 1997.

Steht im Lesesaal.

• WINKLER, GERHARD

Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction

Springer; Second edition, 2006. ISBN: 3540442138.

Steht in der Stochastik-Bibliothek des IAM.

5